The Derivative Function

Homework Exercises

Exercise 1: Suppose that f is a locally linear function and you know that $f(3)=1$ and that $f^{\prime}(3)=-2$.
a. Estimate $f(3.1)$ and $f(2.8)$.
b. Find the equation of the tangent line to the graph of f at $x=3$.

Exercise 2. The line tangent to f at $x=3$ passes through the points $(-2,3)$ and $(3,-1)$. Find $f(3)$ and $f^{\prime}(3)$. Justify your answers.

Exercise 3. The graph of a function f is shown below

a. Estimate the values for the missing entries and fill in the rest of the table.

\boldsymbol{x}	-3	-2	-1	0	1	2	3	4	5	6
$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	-5.3		-1	1.3	1.6		1		-1.8	-3.5

b. Use your answers to part a. to sketch a graph of f '.

Exercise 4. Sketch a graph of a function f that is consistent with these data:

x	-2	-1	1	5
$\boldsymbol{f}(\boldsymbol{x})$	1	-1	-1	2
$f^{\prime}(\boldsymbol{x})$	-3	0	-1	-2

Exercise 5. Consider the graph of the derivative of f, shown below. (The graph of f is not shown.)

The graph of f^{\prime}

a. Determine whether the graph of f is increasing or decreasing at $x=2$. Explain your reasons.
b. Suppose that $f(1)=-1$. Find the equation of the tangent line to the graph of f at $x=1$.
c. Suppose that $f(-1)=2$. Explain why none of the following could be the tangent line to the graph of f at $x=-1$.
i. $y=5 x$
ii. $y=4(x+1)+2$
iii. $y=2(x+3)$
iv. $y=x+3$
d. Suppose that $f(3)=-1$. Explain why none of the following could be the tangent line to the graph of f at $\mathrm{x}=0$.
i. $y=\frac{1}{2} x$
ii. $y=4$
iii. $y=.25(x-3)$
iv. $y=.25(x-3)+1$

