The Derivative Function Homework Exercises

Exercise 1: Suppose that *f* is a locally linear function and you know that f(3) = 1 and that f'(3) = -2.

a. Estimate f(3.1) and f(2.8).

b. Find the equation of the tangent line to the graph of f at x = 3.

Exercise 2. The line tangent to f at x = 3 passes through the points (-2,3) and (3, -1). Find f(3) and f'(3). Justify your answers.

Exercise 3. The graph of a function f is shown below

a. Estimate the values for the missing entries and fill in the rest of the table.

x	-3	-2	-1	0	1	2	3	4	5	6
f'(x)	-5.3		-1	1.3	1.6		1		-1.8	-3.5

b. Use your answers to part a. to sketch a graph of f '.

Exercise 4. Sketch a graph of a function *f* that is consistent with these data:

x	-2	-1	1	5
$f(\mathbf{x})$	1	-1	-1	2
f'(x)	-3	0	-1	-2

Exercise 5. Consider the graph of the derivative of f, shown below. (The graph of f is not shown.)

The graph of f'

c. Suppose that f(-1) = 2. Explain why none of the following could be the tangent line to the graph of f at x = -1.

i. y = 5x ii. y = 4(x+1)+2 iii. y = 2(x+3) iv. y = x+3

d. Suppose that f(3) = -1. Explain why none of the following could be the tangent line to the graph of f at x = 0.

i.
$$y = \frac{1}{2}x$$
 ii. $y = 4$ iii. $y = .25(x-3)$ iv. $y = .25(x-3)+1$